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Background: Exogenous surfactant is currently 
administered via intra-tracheal instillation, a method 
which can increase the possibility of clinical instability 
in the peri-surfactant administration period. Since its 
introduction, there has been an increase in understanding 
of the pathology of respiratory distress syndrome and 
surfactant biology. This includes development of a 
potential nebulized surfactant which has the potential to 
increase the number, safety and timely administration of 
the medication in preterm infants.

Data sources: Based on recent original publications in 
the field of surfactant biology, we reviewed our experience 
with surfactant administration and discussed the available 
evidence on nebulized surfactant and outlined potential 
barriers toward widespread introduction of this therapy.

Results: Surfactant has revolutionized modern neonatal 
management and nebulized surfactant is attractive and a 
vector for administration. However, issues regarding cost-
effectiveness, development of nebulizer devices capable 
of administration, deposition of medication in the airway 
and dosing strategies remain unresolved.

Conclusions: Nebulized surfactant has the potential 
to be a therapeutic breakthrough by eliminating the 
potent volu-and-baro-traumatic effects of mechanical 
ventilation in the peri-surfactant period. Nebulization 
would l ikely  lead to  increased administrat ion 
immediately after birth and more emphasis on non-
invasive ventilator strategies. These features will aid 
clinical implementation of nebulized surfactant as a 
standard of treatment after introduction. 
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Introduction

Surfactant replacement therapy (SRT) has been 
a mainstay of treatment for preterm respiratory 
distress syndrome since its introduction in 

1990.[1] SRT has decreased the incidence of death, 
pneumothorax, and intra-ventricular hemorrhage, and 
improved survival of preterm infants.[2] Currently intra-
tracheal administration is the only approved means 
of delivery, requiring endotracheal intubation and its 
attendant comorbidities. The purpose of this article is to 
review basic mechanism of surfactant biology, provide 
insight into current modes of administration and present 
the rationale and data for nebulized surfactant—a novel 
delivery system for the treatment of respiratory distress 
syndrome. As an increasing number of non-invasive 
ventilation strategies are developed, the utility of 
administering SRT without intubation has the potential 
to reduce intubation complications and reduce the volu-
and-baro-traumatic effects associated with mechanical 
ventilation.

Basic properties of pulmonary surfactant 
Pulmonary surfactant is synthesized by Type II 
pneumocytes, held in lamellar bodies and released 
in the airspace as tubular myelin.[3,4] Surfactant 
comprises 80% phospholipids—the most common 
being dipalmotyl phosphatidlycholine, 8% lipids such 
as cholesterol and 12% surfactant proteins, named 
A-D. Surfactant serves to reduce surface tension, a 
role assisted by its dynamic properties at the air-water 
interface in response to altered stretch and tidal volume 
breathing.[5,6] This function is predominantly mediated 
by surfactant proteins B and C, which promote 
formation of a phospholipid monolayer at the alveolar 
surface. In general, surfactant precursors (glycerol, 
fatty acids, choline and glucose) are obtained from the 
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circulation and are transported to the lamellar bodies. 
Surfactant proteins are synthesized in the endoplasmic 
reticulum of type II pneumocytes, glycosylated in the 
Golgi appartus and also transported to lamellar bodies 
for storage. Lamellar bodies release their contents 
into tubular myelin at the air-water interface (Fig.). 
Surfactant proteins A and D are large, hydrophilic 
molecules involved in host-defense. These proteins 
bind micro-organisms, regulate chemotaxis and 
phagocyte function, and promote cytokine production. 
Ninety percent of surfactant is conserved and the 
entire circulating surfactant pool is replenished every 
9-10 days.[7] Surfactant components are recycled via 
receptor-mediated endocytosis, reincorporated in 
lamellar bodies, and then re-secreted during recycling. 

Indications and efficacy of exogenous 
pulmonary surfactant
Indications, timing and mechanism of SRT for neonates 
remain areas of active research. Data are available 
on SRT for other respiratory conditions including 
meconium aspiration syndrome, congenital surfactant 
protein B deficiency, congenital diaphragmatic hernia 
and pediatric and adult acute respiratory distress 
syndrome (ARDS).[8-11] Meconium aspiration syndrome 
alters mechanism of respiration, causing decreased 
lung compliance and ventilation/perfusion matching, 
increased airway resistance, functional residual capacity 
and respiratory work.[12] Meconium inactivates surfactant, 

resulting in inflammation and atelectasis. Exogenous 
surfactant is thought to restore this inactivated pool, and 
has resulted in short-term improvement in oxygenation 
index and a subsequently decreased need for extra 
corporeal membrane oxygenation.[13] However, a 2000 
systematic Cochrane review demonstrated a reduced 
need for extra-corporeal membrane oxygenation without 
statistical decreases in pneumothorax, chronic lung 
disease or mortality.[14] Stevens and Sinkin[2] found that 
these studies were performed before the widespread 
use of inhaled nitric oxide, which has further decreased 
their impact and underscores the need for a randomized 
controlled trial aimed to assess the utility of exogenous 
surfactant in meconium aspiration syndrome. Similarly, 
a randomized trial of surfactant in pediatric ARDS 
showed no difference in primary outcome of ventilator-
free days. However, short-term benefit in secondary 
outcomes of oxygenation index and mortality were 
seen.[10] Currently surfactant is not recommended 
routinely for congenital surfactant protein B deficiency, 
congenital diagphragmatic hernia or adult ARDS, though 
no randomized control trials have been performed.

Administration
Currently surfactant administered within 2 hours of life 
to infants less than or equal to 28 weeks gestational 
age reduces the incidence of pulmonary interstitial 
emphysema (PIE), chronic lung disease, pneumothorax 
and mortality.[15] For infants at high risk of respiratory 

Fig. Schematic of surfactant synthesis and secretion: pulmonary surfactant's choline and fatty acid backbone is synthesized in the endoplasmic 
reticulum of type II pneumocytes. Surfactant is stored in pre-lamellar bodies and secreted at the air-interface as tubular myelin. Approximately 
10% of surfactant is utilized per day, with components taken up by receptor-mediated endocytosis into the cell, stored in multi-vesicular bodies 
and destined for recycling. (Image courtesy of Dr. Pradeep Mally). 
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distress syndrome who receive surfactant within 30 
minutes of life, reductions in PIE, death, grade III and IV 
intraventricular hemorrhage and the combined outcome 
of broncho-pulmonary dysplasia and death were seen 
in comparison with infants who receive surfactant later 
in life. These meta-analyses included patients who 
received both synthetic and naturally-derived surfactant. 
Natural versus synthetic surfactant was compared in a 
large scale meta-analysis by Soll et al.[16] This review 
concluded that both types of surfactant are effective in 
treatment of respiratory distress syndrome (RDS) when 
given for established RDS or as prophylaxis. However, 
animal-derived surfactants resulted in fewer deaths. 
For these surfactant preparations, the number needed to 
treat to prevent one death was 37. Sinha et al[17] noted 
that this review was driven to statistical significance 
for natural surfactants based on a study which was 
prematurely terminated and not intended as a head-to-
head comparison of natural versus synthetic surfactant, 
but rather as a pharmaco-economic study.[18] Noteworthy 
is the comparison also took place using older generation 
synthetic surfactant preparations. 

Endotracheal instillation is the only current 
means of  surfactant  del ivery.  Adminis t ra t ion 
maximizes clinical outcomes when delivered with 
substantial positive end expiratory pressure (PEEP), 
improving uniformity of distribution.[19-21] But timely 
administration of surfactant is difficult to achieve. 
Even among infants less than 29 weeks who require 
intubation in the delivery room, administration of 
surfactant within 30 minutes with PEEP is poor.[22] 
The increasing popularity of the T-piece resuscitator, 
which provides more uniform PEEP compared to Bag-
Mask ventilation and is addressed in the Neonatal 
Resuscitation Program as an alternative to bag 
ventilation, may increase the rapidity of prophylactic 
administration.[23,24] Since PEEP is more uniformly 
distributed, concerns regarding inconsistent, low or 
excessive PEEP in the peri-surfactant period may be 
eliminated, allowing safer delivery-room administration 
without the need for a ventilator to provide consistent 
PEEP. Consistency of pressure is vital, as changes 
in both positive inspiratory pressure and PEEP can 
contribute to increased volu-and-baro-trauma, heralding 
the inflammatory changes within the lung which are 
associated with chronic lung disease.[20] 

Intubation is associated with several comorbidities. 
Right main stem bronchus intubation, pneumothorax, 
esophageal perforation, accidental extubation, and 
obstruction of the tube are well known complications 
of this procedure. Apneic events, transient hypoxia, 
oxygen saturations, bradycardia and alterations in blood 
pressure and intracranial pressure are also linked to 
intubation events.[25] For infants born outside level III 

units, intubation is likely to be performed by a provider 
infrequently exposed to the procedure, with increasing 
risk. Pediatric trainees showed poor competency in 
intubation skills.[26-29] The high efficacy of surfactant 
therapy in reducing complications of prematurity, 
coupled with the high risk of intubation complication 
and decreased skills amongst trainees and providers at 
community centers makes a nebulized delivery system 
an appealing option to improve the speed of surfactant 
administration.

Considerations of nebulized surfactant
Two different types of nebulizers are generally available 
to physicians. Ultrasonic nebulizers provide a high 
nebulization rate of a liquid drug preparation, but are 
not considered effective for high viscosity liquids. As a 
consequence of nebulization, heat is produced, which 
may destabilize drug formulations.[30] Jet nebulizers 
generally use a compressed gas source to force air 
through a nozzle, creating mist for inhalation. Effective 
delivery of aerosolized medications is dependent upon 
the mass median aerodynamic diameter (MMAD), 
defined as the droplet diameter above and below 
which 50% of the drug's mass is contained.[30] MMAD 
is critical in determining the delivery of aerosol via 
inertial, impaction and sedimentary forces—the 3 
processes which govern movement of aerosols within 
distinct generations of airway branching.[31,32] These 
factors are considered particularly critical for nebulized 
surfactant delivery as increased inertial forces in the 
upper airways can increase deposition, clogging airways 
and subsequently increasing resistance. This will impact 
the volu-and-baro-traumatic effects of positive pressure 
administration, further impeding transmission of the 
medication distally along the airway. Several patient-
related factors have also been identified in nebulized 
medication delivery. Inspiratory flow rate, tidal volume, 
respiratory rate, upper airway and breath holding time 
are important considerations for premature newborns 
requiring surfactant.[33] Premature neonates have 
increased airway resistance, small tidal volumes (per 
kilogram) and altered anterior upper airway anatomy 
compared to adults. Ideal particle MMAD for infants 
has not been adequately established.[30,34] Furthermore, 
patient size may be a consideration for dosing, an 
important consideration given that of 4 clinical trials 
reported, 3 used fixed doses for delivery regardless 
of patient size.[35] The technical aspects of nebulized 
surfactant was best described elsewhere.[36]

Briefly, Jorch et al[36] used two doses of 150 mg/
kg of undiluted natural bovine surfactant attached to a 
jet nebulizer via T-piece connector. This apparatus was 
connected to a naso-pharyngeal tube advanced to just 
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beyond the soft palate. The flow of the nebulizer was 
set at 8 liters/minute and the doses administered over 
5-20 minutes. Berggren et al[37] also used a jet nebulizer 
connected directly to the CPAP adaptor in his trial with a 
flow of 7 liters/minute. Finer et al[38] utilized new nebulizer 
technology (Aeroneb Pro) requiring only 1 liter/minute of 
flow as well as a synthetic surfactant preparation, which 
may better survive the rigors of nebulization.

Clinical data
Analysis of the 4 published clinical studies evaluating 
the efficacy of nebulized surfactant is difficult as the 
studies varied in preparation, delivery device and 
designed outcome. Jorch et al[36] determined continuous 
positive airway pressure (CPAP) and nebulized alveofact 
compared with CPAP alone resulted in improved 
alveolar-arterial gradient and arterial carbon dioxide 
levels in infants between 28-35 weeks gestational age. 
A comparison of nebulized Curosurf and CPAP versus 
CPAP alone in infants of 23-36 weeks gestational 
age found no difference in clinical outcomes, but 
demonstrated that nebulized surfactant was safe and well 
tolerated.[37] Similarly, Finer et al[38] showed the safety of 
nebulized lucinactant in 17 patients between 28-32 weeks 
of gestational age. As has been noted previously, 3 of 
these studies used a fixed amount of drug and dose was 
not weight based.[38,39] Full comparison of all studies is 
available from Mazela et al.[35] Table briefly summarizes 
the four studies and is adapted from this reference. 

Drawing from past studies of nebulized medications 
in cystic fibrosis patients and the history of intratracheal 
instillation, it is reasonable to suggest weight-dependent 
dosing and studies of respiratory performance are both 
clinically relevant indices in evaluating nebulized 
surfactant dosage. Studies comparing nebulized vs. 
intratracheal surfactant and powered to examine not 
only respiratory outcomes but morbidities of prematurity 
such as mortality, chronic lung disease, retinopathy of 
prematurity, intraventircular hemorrhage and necrotizing 
enterocolitis are required to further evaluate nebulized 
efficacy. Since Marshall et al[25] reported transient 
desaturation episodes with administration, a long-term 
study of neurodevelopmental outcome should also be 

considered. To date, the only surfactant preparation with 
sufficient data to report retention of biological activity 
after nebulization is lucinactant—a synthetic preparation 
consisting of DPPC, palmitoyleleoyl, phosphatidyl 
glycerol, palmitic acid and KL4, a novel synthetic 
peptide similar to surfactant protein B.[35] 

Exogenous administration of surfactant has led to 
increased survival and decreased morbidity of premature 
infants. Its use for pediatric and adult ARDS has not 
been well established beyond short-term improvements 
in secondary outcomes and therefore is not routinely 
recommended. Delivery of surfactant requires intubation, 
and is best administered within 30 minutes with CPAP 
to maximize outcomes in infants of less than 28 weeks 
and within 2 hours for infants of 28-32 weeks, again 
with CPAP support. With the increasing popularity of the 
T-piece resuscitator to administer CPAP in the delivery 
room and the time-dependent nature of surfactant 
administration, nebulized surfactant is appealing. Such 
a system may prevent intubation for some patients, thus 
decreasing the risk of complications with the procedure. 
However, questions regarding this promising technology, 
including survival and activity of the medication after the 
nebulization process, MMAD size, weight-based dosing 
and indications for use need to be clarified. A randomized 
controlled trial compared to intra-tracheal instillation 
of surfactant, powered to look at not only short-term 
morbidities but long-term neurodevelopmental outcome 
should be considered before widespread adoption of this 
therapy over current standards of care. 
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